a2 United States Patent

Helak et al.

US009262463B2

US 9,262,463 B2
Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)
(52)

(58)

MANAGING MULTIPLE LOCKS FOR DATA
SET MEMBERS IN A DATA SET INDEX

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Dustin A. Helak, Tucson, AZ (US);
David C. Reed, Tucson, AZ (US);
Thomas C. Reed, Tucson, AZ (US);

Max D. Smith, Tucson, AZ (US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 238 days.

Appl. No.: 13/959,658

Filed: Aug. 5, 2013
Prior Publication Data
US 2015/0039575 Al Feb. 5, 2015
Int. CI.
GOGF 17/30 (2006.01)
U.S. CL
CPC e GOG6F 17/30362 (2013.01)
Field of Classification Search
CPC .o GOG6F 17/30362; GOG6F 17/30171,

GOG6F 17/30371; GOGF 17/30008; GOGF 9/526;

GOG6F 9/466; GOGF 17/30067

USPC ittt 707/704
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,062,038 A 10/1991 Jordan, Jr.

5,119,490 A * 6/1992 Kurose

5,430,869 A 7/1995 Ishak et al.

5,557,786 A * 9/1996 Johnson, Jr.

6,792,432 Bl 9/2004 Kodavalla et al.

7,539,988 Bl 5/2009 Hersh

8,019,779 B2 9/2011 Teng et al.
2008/0086470 Al* 4/2008 Graefecooevvvvrvvrrnnnn. 707/8
2014/0310317 Al* 10/2014 Spillane et al. 707/803

OTHER PUBLICATIONS

U.S.Appl. No. 13/619,962, filed Sep. 14,2012 by D.L. Erdmann et al.
* cited by examiner

Primary Examiner — Cam-Y Truong
(74) Attorney, Agent, or Firm — David W. Victor; Konrad
Raynes Davda & Victor LLP

(57) ABSTRACT

Provided are a computer program product, system, and
method for managing multiple locks for data set members in
adata set index. The data set index has leaf nodes and internal
nodes. In response to determining that a current lock is set at
a locked node that prevents a grant to a requested lock, a
determination is made as to whether there are different first
and second descendant nodes from the locked node at a same
level of the tree data structure linked to the requested data set
member and the locked data set member, respectively. If so,
the requested lock for the requested data set member is set at
the first descendant node, the current lock is moved to the
second descendant node for the locked data set member and
the requested lock is granted.

19 Claims, 10 Drawing Sheets

Receive request for a lock {exclusive or 600
shared) for a requested data set member.

Is lock

not propagating?

lock state of
current node not
propagating?

Set current nods to root node.

state of cument node and Yes

requested lock shared and

602
606

Set the requested lock (shared or
exclusive) at the root node.

610

Grant request quested lock for
requested data set member.

614

Deny lock request access to
requested data set member.

Determine requested data set member next node that is 516
child of current node linking to the data set member.

!

Determing current data set member next node that is
child of current node linking to the cument data set
member for which the lock at the current node is held.

618

Go to block 620 in FIG. 6B.

U.S. Patent Feb. 16, 2016

102

Sheet 1 of 10

US 9,262,463 B2

Server

110

Processor |— 108

Memory

114

Data Set
Index

112

Connection

Manager

116

Data Set
Memory Manager

/St—\(106

C_Storage

Data Sets }—— 200

N~

FIG. 1
200

202 200 {

[

[

Index | Member(s)

Data Set

FIG. 2

PRIOR ART

US 9,262,463 B2

U.S. Patent Feb. 16, 2016 Sheet 2 of 10
300
302 304 306; 308 306, 308, 310 312
[[[[/ [] /
Node | Parent | _Child Child Child | Child Rebalance
ID | Node | Pointer; | Key(s); | ® © ® | Pointer, | Key(s); Lock | "Flag

Internal Node

FIG. 3
400

402 404 406 408
[[[[

Node Data Set Lock Rebalance

ID Member(s) Flag
Leaf Node
FIG. 4
500
502 504 506
/ / [

Locked

%)(l);g Data Info%gf:tion
Member

Lock

FIG. 5

U.S. Patent

Feb. 16, 2016

<

Receive request for a lock (exclusive or
shared) for a requested data set member.

A 4

Set current node to root node.

604

Is there
no lock set at root
node?

Is lock
state of current node and
requested lock shared and
not propagating?

lock state of
current node not
propagating?

Sheet 3 of 10 US 9,262,463 B2
> 600
— 602
606
[
Yes | Set the requested lock (shared or

exclusive) at the root node.

610
[

Grant request quested lock for
requested data set member.

614
[

Deny lock request access to
requested data set member.

Yes

Determine requested data set member next node that is
child of current node linking to the data set member.

— 616

A 4

Determine current data set member next node that is
child of current node linking to the current data set
member for which the lock at the current node is held.

— 618

A 4

Go to block 620 in FIG. 6B.

FIG. 6A

U.S. Patent Feb. 16, 2016 Sheet 4 of 10 US 9,262,463 B2

622

Go to block 614
in FIG. 6A to
deny request.

current node a leaf

determined requested
data set member next node
and the current data

No 624

set member next /
node %iﬁe?rent Set the current node to the
nodes?
determined requested data |— GOEOiBOF?ECgA
set member next node. —
626
v /

Move the lock for the current data set member
to the current data set member next node.

628
A 4 /

Create a lock for the requested data set member at requested data set member
next node as requested (exclusive propagating if not leaf node, shared non
propagating if shared lock request, exclusive not propagating if leaf node).

Is the
current node the root
node?

No

632 — Set the root node to shared
propagating downward.

A 4

634 —] Grant lock request for the |,
requested data set member. |” |:|G GB

US 9,262,463 B2

Sheet 5 of 10

Feb. 16, 2016

U.S. Patent

s103duasaq Jaquiaiy O
Ve Emw__%oa X
. sajededol [3 |
N w_n_ i m>_m=_em_@ R uegm a«
HS piemumog . HS
sajesedol [3 |
A0 pRIES @ v_sﬁ nem;m a«
80L -1
eIl
90/ +*| ¢1 A A A A {1 A
b0/ —— I 4 I 7 4 I 7
X
20, —1 1004 | B8]
00z Xapu] JoS ejeq 0

US 9,262,463 B2

Sheet 6 of 10

Feb. 16, 2016

U.S. Patent

s103duoseq Jaquely O
)& Emwﬁ_%oc m
. selesedo)
w 0_n_ T BNSN @ V_SW_ E_mhnw_ _ﬂ
HS PLENLNOQ ﬁ
Solesedao) 3
ROTRRES @ xoom_ Uo_m__m_ _.ﬂ
801
AV
90/ +*| ¢1 A 1 1 1 1 1
Xa
v0. - M 7-@ 0 1 11
911
20, —] 1004 | &
xapuj1eg eeq V1L

US 9,262,463 B2

Sheet 7 of 10

Feb. 16, 2016

U.S. Patent

6 9l

Be|{ saue|eqay L

si03duasaq ssquaiy O

Xd
%907 8AISN|9XT ﬁ

.,

HS

%207 paleys ﬁ

plemumog =
sajededoly a@
yo0] peieys 'O

Emwc%cn_ at
sejesedold (LS
,.,

o %007 paleys

80L —

90/ -

00L —

o

A Al Al
11 11 11
TAAA
100y 475
— 3
201 q«/

xapuj 3eS ejeg 714

1N

81L

U.S. Patent Feb. 16, 2016 Sheet 8 of 10 US 9,262,463 B2

Delete or add child nodes or data set 1000
members to a modified node (internal or leaf).

A 4

Set a current node to the modified node. |— 1002

A 4

Set a rebalance flag for the current node. |— 1004

A\ 4

.
%

y 1006

Is a lock held for the
current node?

Perform a rebalance operation with respecttoall | __ 1008
descendants (members or nodes) of current node.

A 4

Clear the rebalance flag. |— 1010

s
the current node the
root node?

Set the current node tothe |
parent of the current node. 1014 F|G. 10

US 9,262,463 B2

Sheet 9 of 10

Feb. 16, 2016

U.S. Patent

sl0yduasaq Jaquey O
Xd piemumoq = 3
[T 9l o snsnog (8] V_wwﬂmwm_%hm_ i
HS plemumog . HS
3e|{ aauejeqay L %907 paleys @ v_w%mwww%hm_ _%
80L 1 ﬂm m% w
€L

90L1*| ¢1 A

v 1689 1

.7
iy L
vl

00£ —]

8€L

¢l

VEL

¢l

4 21 21

ﬁ 4 I1 7
100y [0

¢0. q«J

xopuj1eg eleq V1L

US 9,262,463 B2

Sheet 10 of 10

Feb. 16, 2016

U.S. Patent

s103duaseq Jaqusy O)
X Emw:%cm_ i
. sa1esedol [8 |
¢T 9l oo snsniog (2] Y007 el &
HS plemumogq . HS
ge|q aaueeqs sajegedo) 8]
14 200eRgY o peeys () Soetedod ()
80L -1
A
90/ +* | ¢1 A 1 A 1 A A
b0+ 17 | 8L I I I q_%
] oA
91/ / 8L
il
HS
20/ — 100y qﬁ/
] ,._
00z o —=] VL
Xapu] 18§ ejeq

US 9,262,463 B2

1

MANAGING MULTIPLE LOCKS FOR DATA
SET MEMBERS IN A DATA SET INDEX

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a computer program prod-
uct, system, and method for managing multiple locks for data
set members in a data set index.

2. Description of the Related Art

A partitioned data set extended (PDSE) is a data set having
an index and zero or more members. When adding new data
for a new or existing member, the new data is appended
sequentially to the end of the PDSE.

The PDSE index may be implemented in a tree data struc-
ture where pages allocated to the PDSE data sets are assigned
to implement internal nodes and leaf nodes representing the
data set index. Each leaf node links to one or more members
and provides information to access the member. Each internal
node links to one or more further internal nodes or leaf nodes.
When a user seeks to access a member, the member name is
presented and the tree is traversed through the one or more
internal nodes to the leaf node representing the requested
member using the member name as the index key. Member
data is only loaded into the memory when accessed.

When a data set is opened, the entire data set index is
loaded into the memory by assigning pages to implement all
the internal and leaf nodes used to represent the entire data set
index. Access to the PDSE data set directory is serialized by
a single lock to a root node of the data set index tree data
structure providing either exclusive or shared access to the
directory. Generally the PDSE directory lock is only held as
needed and released upon completion of the input or output
operation. In some cases, however, it is possible for a job to
require the data set index lock for an inordinate amount of
time thus denying access to the data set index by other pro-
cesses.

SUMMARY

Provided are a computer program product, system, and
method for managing multiple locks for data set members in
a data set index. The data set has nodes including internal and
leaf nodes forming a tree data structure representing all or a
portion of the data set index for the data set. The leaf nodes
include information on data set members and each internal
node includes a pointer to at least one other of the internal
nodes or the leaf nodes based on key values used to traverse
the tree data structure to reach the leaf nodes that are used to
access the members of the data set. A lock request is received
for a requested lock on a requested data set member of the
data set members. In response to determining that a current
lock is set at a locked node comprising one of the nodes linked
to a locked data set member of the data set members that
prevents a grant of the requested lock, a determination is
made as to whether there are different first and second descen-
dant nodes from the locked node at a same level of the tree
data structure linked to the requested data set member and the
locked data set member, respectively. If so, the requested lock
for the requested data set member is set at the first descendant
node, the current lock is moved to the second descendant node
for the locked data set member and the requested lock is
granted to the lock request.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an embodiment of a computing environ-
ment.

10

40

45

65

2

FIG. 2 illustrates an embodiment of a data set record as
known in the prior art.

FIG. 3 illustrates an embodiment of a data structure to
implement an internal node in a data set index tree data
structure.

FIG. 4 illustrates an embodiment of a data structure to
implement a leaf node in the data set index tree data structure.

FIG. 5 illustrates an embodiment of a lock maintained at a
node in the data set index tree.

FIGS. 6a and 65 illustrate an embodiment of operations to
use the data set index to process lock requests for data set
members to allow multiple locks to be held.

FIGS. 7-9 illustrate examples of states of the data set index
tree data structure when processing lock requests according
to the operations of FIGS. 6a and 65.

FIG. 10 illustrates an embodiment of operations to rebal-
ance nodes of the data set index tree.

FIGS. 11 and 12 illustrate examples of states of the data set
index when rebalancing nodes of the data set index tree
according to the operations of FIG. 10.

DETAILED DESCRIPTION

Described embodiments provide techniques for processing
a data set index tree data structure to allow for multiple
exclusive and shared locks to be granted with respect to
different data set members by splitting the tree data structure.
This splitting places locks for different lock requests on dif-
ferent sub-trees of the data set index tree providing links to the
separately locked data set members. If the child nodes or data
set members of a modified node are deleted or added, then a
rebalance flag may be set at the modified node to rebalance
the nodes and data set members in the sub-tree extending
from the modified mode when the locks are released with
respect to the modified node or sub-tree.

FIG. 1 illustrates an embodiment of a computing environ-
ment. A plurality of hosts (not shown) may submit read and
write requests to a server 102 to access data in data sets 200 in
a storage 106. The server 102 includes a processor 108 and a
memory 110 having a connection manager 112 program to
manage read and write access to the data sets 200. The con-
nection manager 112 may load data set indexes 114 into the
memory for the data sets 200 that are opened for access. A
data set memory manager 116 manages the use of pages of
data in the memory 110 that are allocated to the connection
manager 112 for data set operations. A specific number of
pages may be allocated for data set operations. The pages
allocated for data sets remain allocated even if not used. If
additional pages are needed, the data set memory manager
116 may request additional pages to be allocated for data set
operations. A page may comprise a fixed sized page allocated
to store the data set indexes 114 and data set members.

In one embodiment, the memory 110 may comprise a
volatile or non-volatile storage, such as a Dynamic Random
Access Memory (DRAM), Random Access Memory (RAM)
or a non-volatile memory, e.g., battery backed-up Random
Access Memory (RAM), static RAM (SRAM), etc. The stor-
age 106 may comprise an array of storage devices, such as a
Justa Bunch of Disks (JBOD), Direct Access Storage Device
(DASD), Redundant Array of Independent Disks (RAID)
array, virtualization device, tape storage, flash memory, solid
state storage devices (e.g., EEPROM (Electrically Erasable
Programmable Read-Only Memory), flash memory, storage-
class memory (SCM)), electronic memory, magnetic tape
media, etc.

The connection manager 112 and data set memory man-
ager 116 may comprise one or more programs loaded into the

US 9,262,463 B2

3

memory 110 that are executed by the processor 108 or may be
implemented in one or more hardware devices in the server
102, such as in Application Specific Integrated Circuits
(ASIC).

FIG. 2 illustrates an embodiment of a data set 200, as
known in the prior art, which includes an index 202 providing
a location in the data set 200 of one or more members 204.
The index 114 comprises the index 202 loaded into the
memory 110. A member comprises a range of tracks. In
certain embodiments, the data sets 200 may comprise a Par-
titioned Data Set Extended (PDSE), where new data is written
to the end of the data set and old versions of members are
reused or deleted. In an alternative embodiment, the data sets
200 may comprise a type of data set other than a PDSE.

The data set index 114 (202) may be implemented as a
representation of a tree structure having leaf nodes and inter-
nal nodes (also known as non-leaf nodes). There may be one
page in the memory 110 allocated to each node, leaf and
internal. Each leaf node may provide links to one or data set
members 204 of a data set 200. The internal nodes include one
or more keys and links to one or more internal nodes or leaf
nodes, which in turn link to one or more data set members
204. The keys of the internal nodes are used to traverse the
tree structure representing the data set index 114 to access the
leafnodes linking to the data set members 204. The keys in the
internal nodes used to traverse the tree may comprise charac-
ters or character strings for member 204 names. Alternatively,
the keys may comprise other values used to traverse the data
set index 114 tree.

FIG. 3 illustrates an embodiment of information in a data
structure maintained for an internal node 300, which may be
implemented as a page in the memory 110, including a node
identifier (ID) 302; a parent node 304 in the tree data structure
comprising the root node or another internal node; for each of
the one or more child nodes of the node 300, a child pointer
306, . .. 3067 pointing to the child node of the internal node
300 and child keys 308, . .. 308, used to determine the child
node pointer to select at the internal node 300 to traverse; a
lock 310 indicating a type of lock, if any, set for the node 300;
and a rebalance flag 312 indicating whether a rebalance
operation is to be performed at the node to rebalance nodes
below that node.

FIG. 4 illustrates an embodiment of a leaf node 400, which
may be implemented as a page in the memory 110, including
a node ID 402 identifying the leaf node; one or more data set
member descriptors 404 identifying data set members 204
assigned to the leaf node 400, if any; a lock 406 indicating a
type of lock, if any, set for the leaf node 400; and a rebalance
flag 410 indicating whether a rebalance operation is to be
performed for the data set members 404.

FIG. 5 illustrates an embodiment of information main-
tained for a lock 500, such as one of the locks 310 and 408,
including a lock type 502, a locked data set member 504
comprising the data set member subject to the lock, and lock
information 506, such as information on the nodes that are
traversed in the tree to access that data set member 504. The
lock types 502 may include a propagated shared or exclusive
lock type set at an internal node 300 and indicates that the lock
propagates downward to one of the data set members 204 and
a non-propagated shared or exclusive lock indicates that the
lock applies to that node itself. A propagated or non-propa-
gated exclusive lock at a node indicates that no other request
can be made for a data set member that is accessed in the data
set index through that exclusive locked node. A propagated or
non-propagated shared lock at a node indicates that another
shared request can be made to a data set member accessed
through the shared locked node. For instance, a read, or open

10

15

20

25

30

35

40

45

50

55

60

65

4

for input, operation to read one or more data set members 204
requires shared access and an operation to modify or update
data set members 204, open of update, requires exclusive
access.

Described embodiments allow multiple requests to obtain
exclusive and shared access to data set members by splitting
the tree and setting locks at different internal nodes of the data
set index tree structure when data set members are on separate
sub-trees of the data set index tree structure, such that mul-
tiple exclusive and shared locks may exist at the same time on
the tree if they exist at nodes or on sub-trees that are not
linked. To accomplish this, upon receiving a lock request for
arequested data set member, if a current lock is set at a locked
node for a locked data set member that prevents a grant of the
requested lock, then a determination is made as to whether
there are different first and second descendant nodes for the
requested data set member and the locked data set member,
respectively, at a same level of the tree data structure below
the locked node. If so, then the requested lock for the
requested data set member is set at the first descendant node
and the current lock for the locked node is moved to the
second descendant node for the locked data set member and
the lock request is granted. The lock request is denied if there
are no different first and second nodes for the requested data
set member and the locked data set member from the locked
node at a same level of the tree data structure.

FIGS. 6a and 65 illustrate an embodiment of operations
performed by the connection manager 112 or some other
module to manage the splitting of the data set index 114 tree
data structure to allow multiple exclusive and shared locks to
be granted for a data set 200. Upon receiving (at block 600) a
request for a lock for a requested data set member 204 in the
data set 200, the connection manager 112 sets (at block 602)
a current node to the root node of the data set index 114. FIG.
7 illustrates an embodiment of a data set index 700 shown as
atree data structure having a root node 702, internal nodes .1
704 and leaf nodes L2 706 that link to one or more data set
member descriptors 708. If (at block 604) there is no lock set
at the root node 702, then the requested lock is set (at block
606) at the root node 702. If the requested lock is shared, then
anon-propagating shared lock is set, whereas if the requested
lock is exclusive a propagating exclusive lock is set. FIG. 7
illustrates the occurrence of block 606, where a request for an
update exclusive lock for data set member “A” 712 results in
an exclusive lock 710 being set at the root node 702 that
propagates downward.

If (at block 608) the lock state of the current node is shared
non-propagating and the requested lock is shared, then the
connection manager 112 grants (at block 610) access to the
shared lock for the requested data set member. If (at block
612) the lock of the current node is not propagating, then no
further splitting is possible and the connection manager 112
denies (at block 614) the lock request for the data set member.
If (at block 612) the current node lock state is propagating,
i.e., representing a shared or exclusive lock held at the root or
an internal node, then further splitting is possible. In such
case, a determination is made (at block 616) of the requested
data set member next node that is a child of the current node
linking to the current data set member for which the lock at
the current node is held. A determination is also made (at
block 618) of the current data set member next node that is a
child of the current node linking to the current data set mem-
ber for which the lock at the current node is held.

With respect to FIG. 65, if (at block 620), the determined
data set member next node and the current data set member
next node are the same node, i.e., not different nodes, then the
lock cannot be split at the current level. In such case, if (at

US 9,262,463 B2

5

block 622) the current node is a leaf node, then further split-
ting at a lower level in the tree cannot be considered and
control proceeds to block 614 in FIG. 6a to deny the lock
request. If (at block 622) the current node is not a leaf node,
then a further level can be considered for splitting, and the
current node is set (at block 624) to the determined requested
data set member next node, which is also the current data set
member next node, and control proceeds to block 604 in FI1G.
6a to determine whether the lock can be granted, i.e., split at
alower level or at the root node if all locks have since cleared.

If (at block 620) the determined data set member next node
and the current data set member next node comprise different
nodes, then the lock can be split and the lock for the current
data set member at the current node is moved (at block 626) to
the current data set member next node. Further, a lock for the
requested data set member is created (at block 628) at
requested data set member next node as requested (exclusive
propagating if not leaf node, shared non propagating if shared
lock request, exclusive not propagating if leaf node). If (at
block 630) the current node is the root node, then the root
node is set (at block 632) to have a shared propagating down-
ward lock indicating that further exclusive and shared locks
may exist at lower levels and the lock request is granted (at
block 634) for the requested data set member. When setting a
lock 500, the lock will record in the lock information 506 the
nodes traversed to reach the data set member 504 subject to
the lock.

FIG. 8 illustrates a splitting of the tree 700 when an update
request is received for data set member 720 while one exclu-
sive lock 710 was held at the root node 702 to update the data
set member A 712 on the tree as shown in FIG. 7. FIG. 8
shows the result of moving the lock 710 for data set member
A to the node 716 according to the operation at block 626 in
FIG. 65, of setting an exclusive lock 718 for data set member
B 720 at next node 722 according to the operation at block
628, and setting the root node 702 to having the propagating
shared lock 714 according to the operation at block 632 in
FIG. 6.

FIG. 9 illustrates an example of a situation where data set
members A 712 and D 730 are marked for deletion and then
a read or open for output operation is directed to data set
member C 732 which requires a shared lock. The operations
of FIGS. 6a and 65 would be performed to move the exclusive
lock 710 to the node 734 and set a shared lock 736 at the node
738 for the read directed to data set member 732. Further
since a delete is directed to data set members A 712 and D
730, a rebalance flag 740 is set at leaf node 734 of the deleted
members to perform rebalancing due to the deletion of the
data set members 712 and 730.

FIG. 10 illustrates an embodiment of operations performed
by the connection manager 114 or other data set index man-
ager to rebalance nodes. Upon deleting or adding child nodes
or data set members (at block 1000) to a node referred to as a
modified node, the connection manager 114 sets (at block
1002) a current node variable to the modified node and a
rebalance flag 312 and 408 is set (at block 1004) for the
current node. If (at block 1006) there is a lock held for the
current node, then control proceeds to wait until the lock is
released. Once (from the no ranch of block 1006) there are no
locks held for the current node, then the connection manager
114 performs (at block 1008) a rebalance operation with
respect to all descendant data set members and nodes linked
to the current node at which the rebalance flag 312, 408 is set.
The rebalance flag 312, 408 is cleared (at block 1010). If (at
block 1012) the current node is the root node, then there is no
more of the tree to rebalance and control ends. If (at block
1012) the current node is not the root node, then the connec-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion manager 114 sets (at block 1014) the current node to the
parent node of the current node and then proceeds back to
block 1004 to set the rebalance flag 312 for the current node
to perform rebalancing at a higher level in the tree data struc-
ture.

FIG. 11 illustrates an example of the rebalancing opera-
tions of FIG. 10 when the data set members A 712 and D 730
(FIG. 9) are deleted and the lock 710 released and the shared
lock 736 (FIG. 9) released after shared access to data set
member 732 is closed. At this point, the rebalance flag 742
may be set at node 716 and an exclusive propagating lock 744
set at the node 716 so that rebalancing may occur at the nodes
and data set members below node 716.

FIG. 12 illustrates an example of the rebalancing opera-
tions of FIG. 10 after the rebalancing occurs at node 716 as
shown in FIG. 11, which results in the release of the exclusive
lock 744 (FIG. 11) and the rebalance flag 742 (FIG. 11)
cleared. A rebalance flag is then set 746 at the parent of the
node 716, which is the root node 702. When the final lock 714
is removed from the root node 702, then the rebalancing can
be performed with respect to the entire data set index 700 tree
data structure.

Described embodiments allow the splitting of a tree data
structure for locking to allow multiple locks, exclusive and
shared, to be held for data set members if the data set members
are linked to different sub-trees of the tree data structure.
Multiple locks may be set at different sub-trees at different
levels in the tree data structure without creating conflicts to
allow multiple lock requests to be granted for one data set
index. The split of the tree may occur at the highest level in the
tree as possible such that the lock state of the sub-tree is
compatible so that no incompatible lock states may be held on
nodes pointing to members in leaf nodes below the split.
Further, splitting the tree and setting the exclusive or shared
locks as high in the tree as possible reduces the traverse of the
tree nodes.

Yet further, the node at which the tree splits for locking will
act as a new sub-root for the sub-tree for the locked data set
member. When the tree splits, the new locks at the sub-roots
of'the sub-tree exist at the same level of the tree so that neither
incompatibly locked tree is a sub-tree of the other. This limits
the total number of existent incompatible locks to a maximum
of the number of leaf nodes.

Further, with described embodiments, a rebalance flag is
set after the child nodes or data set members of a modified
node are modified, e.g., deleted or added, to indicate that the
sub-tree from the modified node may require balancing.
When an exclusive lock at the modified node is released, the
descendant nodes and data set members of the modified node
may be rebalanced, and the rebalance flag propagated upward
in the tree to the parent node to cause further rebalancing at a
higher level in the tree after the exclusive lock at the parent
node is released and until the entire tree is rebalanced.

The described operations may be implemented as a
method, apparatus or computer program product using stan-
dard programming and/or engineering techniques to produce
software, firmware, hardware, or any combination thereof.
Accordingly, aspects of the embodiments may take the form
of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-
code, etc.) or an embodiment combining software and hard-
ware aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the
embodiments may take the form of a computer program prod-
uct embodied in one or more computer readable medium(s)
having computer readable program code embodied thereon.

US 9,262,463 B2

7

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store
a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

20

30

35

40

45

8

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The terms “an embodiment”, “embodiment”, “embodi-
ments”, “the embodiment”, “the embodiments”, “one or
more embodiments”, “some embodiments”, and ‘“one
embodiment” mean “one or more (but not all) embodiments
of the present invention(s)” unless expressly specified other-
wise.

The terms “including”, “comprising”, “having” and varia-
tions thereof mean “including but not limited to”, unless
expressly specified otherwise.

The enumerated listing of items does not imply that any or
all of the items are mutually exclusive, unless expressly speci-
fied otherwise.

The terms “a”, “an” and “the” mean “one or more”, unless
expressly specified otherwise.

Devices that are in communication with each other need
not be in continuous communication with each other, unless
expressly specified otherwise. In addition, devices that are in
communication with each other may communicate directly or
indirectly through one or more intermediaries.

A description of an embodiment with several components
in communication with each other does not imply that all such
components are required. On the contrary a variety of
optional components are described to illustrate the wide vari-
ety of possible embodiments of the present invention.

Further, although process steps, method steps, algorithms
or the like may be described in a sequential order, such pro-
cesses, methods and algorithms may be configured to work in
alternate orders. In other words, any sequence or order of
steps that may be described does not necessarily indicate a
requirement that the steps be performed in that order. The
steps of processes described herein may be performed in any
order practical. Further, some steps may be performed simul-
taneously.

When a single device or article is described herein, it will
bereadily apparent that more than one device/article (whether
or not they cooperate) may be used in place of a single
device/article. Similarly, where more than one device or
article is described herein (whether or not they cooperate), it
will be readily apparent that a single device/article may be
used in place of the more than one device or article or a
different number of devices/articles may be used instead of
the shown number of devices or programs. The functionality
and/or the features of a device may be alternatively embodied
by one or more other devices which are not explicitly
described as having such functionality/features. Thus, other
embodiments of the present invention need not include the
device itself.

The illustrated operations of the Figures show certain
events occurring in a certain order. In alternative embodi-
ments, certain operations may be performed in a different

US 9,262,463 B2

9

order, modified or removed. Moreover, steps may be added to
the above described logic and still conform to the described
embodiments. Further, operations described herein may
occur sequentially or certain operations may be processed in
parallel. Yet further, operations may be performed by a single
processing unit or by distributed processing units.

The foregoing description of various embodiments of the
invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifica-
tions and variations are possible in light of the above teaching.
It is intended that the scope of the invention be limited not by
this detailed description, but rather by the claims appended
hereto. The above specification, examples and data provide a
complete description of the manufacture and use of the com-
position of the invention. Since many embodiments of the
invention can be made without departing from the spirit and
scope of the invention, the invention resides in the claims
herein after appended.

What is claimed is:
1. A computer program product for accessing a computer
memory to manage a data set stored in a storage, the computer
program product comprising a non-transitory computer read-
able storage medium having computer readable program
code embodied therein that executes to perform operations,
the operations comprising:
providing a data set index in the computer memory having
nodes including internal and leaf nodes forming a tree
data structure representing all or a portion of the data set
index for the data set, wherein the leaf nodes include
information on data set members, wherein each internal
node includes a pointer to at least one other of the inter-
nal nodes or the leat nodes based on key values used to
traverse the tree data structure to reach the leaf nodes
that are used to access the members of the data set;

receiving a lock request for a requested lock on a requested
data set member of the data set members;

in response to determining that a current lock is set at a

locked node comprising one of the nodes linked to a
locked data set member of the data set members that
prevents a grant of the requested lock, determining
whether there are different first and second descendant
nodes from the locked node at a same level of the tree
data structure linked to the requested data set member
and the locked data set member, respectively; and

in response to determining that there are the different first

and second descendant nodes:

setting the requested lock for the requested data set mem-

ber at the first descendant node; moving the current lock
to the second descendant node for the locked data set
member; and granting the requested lock to the lock
request;

clearing a rebalance flag at a modified node; and

until a root node is rebalanced, in response to rebalancing

at one of the nodes as a result of the rebalance flag being
set, setting a rebalance flag at a parent node to the node
rebalanced to cause a rebalancing at the parent node
when there is no lock held at the parent node.

2. The computer program product of claim 1, wherein the
operations further comprise:

setting a shared lock on the locked node when the locked

node comprises a root node of the tree data structure.

3. The computer program product of claim 1, wherein the
operations further comprise:

denying the lock request in response to determining that

there are no different first and second descendants nodes

10

15

20

25

30

35

40

45

55

60

65

10

from the locked node at a same level of the tree data
structure for the requested data set member and the
locked data set member.

4. The computer program product of claim 3, wherein the
locked node results in the denying of the lock request when
the locked node comprises one of the nodes in the tree data
structure that is traversed to reach the leaf node of the
requested data set member.

5. The computer program product of claim 4, wherein the
determining whether there are different first and second
descendant nodes from the locked node at a same level of the
tree data structure comprise:

while the first and second descendant nodes are not one of
the leaf nodes and a same internal node, performing:
determining whether a next level of first and second

descendent nodes for the requested data set member
and the locked data set member are different.

6. The computer program product of claim 1, wherein the
lock is granted to the lock request in response to the lock
request comprising a shared lock request and one of the nodes
traversed in the tree data structure to reach the requested data
set member has a shared lock set.

7. The computer program product of claim 1, wherein the
operations further comprise:

setting the rebalance flag at the modified node comprising
one of the nodes having at least one child node or data set
member added or deleted; and

rebalancing any children nodes or data set members of the
modified node in response to the rebalance flag.

8. A system for managing a data set stored in a storage,

comprising:

a processor; a memory;

a computer readable storage medium having computer
readable program code embodied therein that executes
to perform operations, the operations comprising:

providing a data set index in the memory having nodes
including internal and leaf nodes forming a tree data
structure representing all or a portion of the data set
index for the data set, wherein the leaf nodes include
information on data set members, wherein each internal
node includes a pointer to at least one other of the inter-
nal nodes or the leaf nodes based on key values used to
traverse the tree data structure to reach the leaf nodes
that are used to access the members of the data set;

receiving a lock request for a requested lock on a requested
data set member of the data set members;

in response to determining that a current lock is set at a
locked node comprising one of the nodes linked to a
locked data set member of the data set members that
prevents a grant of the requested lock, determining
whether there are different first and second descendant
nodes from the locked node at a same level of the tree
data structure linked to the requested data set member
and the locked data set member, respectively; and

in response to determining that there are the different first
and second descendant nodes: setting the requested lock
for the requested data set member at the first descendant
node; moving the current lock to the second descendant
node for the locked data set member; and granting the
requested lock to the lock request;

clearing the rebalance flag at a modified node; and

until a root node is rebalanced, in response to rebalancing
at one of the nodes as a result of the rebalance flag being
set, setting a rebalance flag at a parent node to the node
rebalanced to cause a rebalancing at the parent node
when there is no lock held at the parent node.

US 9,262,463 B2

11

9. The system of claim 8, wherein the operations further
comprise:

setting a shared lock on the locked node when the locked

node comprises a root node of the tree data structure.
10. The system of claim 9, wherein the locked node results
in the denying of the lock request when the locked node
comprises one of the nodes in the tree data structure that is
traversed to reach the leaf node of the requested data set
member.
11. The system of claim 10, wherein the determining
whether there are different first and second descendant nodes
from the locked node at a same level of the tree data structure
comprise:
while the first and second descendant nodes are not one of
the leaf nodes and a same internal node, performing:
determining whether a next level of first and second
descendent nodes for the requested data set member
and the locked data set member are different.
12. The system of claim 8, wherein the operations further
comprise:
denying the lock request in response to determining that
there are no different first and second descendants nodes
from the locked node at a same level of the tree data
structure for the requested data set member and the
locked data set member.
13. The system of claim 8, wherein the operations further
comprise: setting the rebalance flag at the modified node
comprising one of the nodes having at least one child node or
data set member added or deleted; and rebalancing any chil-
dren nodes or data set members of the modified node in
response to the rebalance flag.
14. A method for managing a data set stored in a storage
comprising:
providing a data set index in a computer memory having
nodes including internal and leaf nodes forming a tree
data structure representing all or a portion of the data set
index for the data set, wherein the leaf nodes include
information on data set members, wherein each internal
node includes a pointer to at least one other of the inter-
nal nodes or the leat nodes based on key values used to
traverse the tree data structure to reach the leaf nodes
that are used to access the members of the data set;

receiving a lock request for a requested lock on a requested
data set member of the data set members;

in response to determining that a current lock is set at a

locked node comprising one of the nodes linked to a
locked data set member of the data set members that

10

15

20

25

30

35

40

45

12

prevents a grant of the requested lock, determining
whether there are different first and second descendant
nodes from the locked node at a same level of the tree
data structure linked to the requested data set member
and the locked data set member, respectively; and

in response to determining that there are the different first

and second descendant nodes: setting the requested lock
for the requested data set member at the first descendant
node; moving the current lock to the second descendant
node for the locked data set member; and granting the
requested lock to the lock request;

clearing the rebalance flag at a modified node; and

until a root node is rebalanced, in response to rebalancing

at one of the nodes as a result of the rebalance flag being
set, setting a rebalance flag at a parent node to the node
rebalanced to cause a rebalancing at the parent node
when there is no lock held at the parent node.

15. The method of claim 14, further comprising:

setting a shared lock on the locked node when the locked

node comprises a root node of the tree data structure.

16. The method of claim 14, further comprising:

denying the lock request in response to determining that

there are no different first and second descendants nodes
from the locked node at a same level of the tree data
structure for the requested data set member and the
locked data set member.

17. The method of claim 14, wherein the locked node
results in the denying of the lock request when the locked
node comprises one of the nodes in the tree data structure that
is traversed to reach the leaf node of the requested data set
member.

18. The method of claim 17, wherein the determining
whether there are different first and second descendant nodes
from the locked node at a same level of the tree data structure
comprise:

while the first and second descendant nodes are not one of

the leaf nodes and a same internal node, performing:

determining whether a next level of first and second
descendent nodes for the requested data set member
and the locked data set member are different.

19. The method of claim 14, further comprising:

setting the rebalance flag at the modified node comprising

one of the nodes having at least one child node or data set
member added or deleted; and

rebalancing any children nodes or data set members of the

modified node in response to the rebalance flag.

#* #* #* #* #*

